Distributed Edge Cloud R-CNN for
Real Time Object Detection

Joshua Herrera, Mevlut A Demir, Parsa Yousefi, John J Prevost, and Paul Rad
Department of Electrical and Computer Engineering
The University of Texas at San Antonio
One UTSA Circle, San Antonio, TX 78249
Email: joshua.herrera@utsa.edu, mevlut.demir@utsa.edu, parsa.yousefi@utsa.edu, jeff.prevost@utsa.edu, paul.rad@utsa.edu

Abstract—Cloud computing infrastructures have become the
de-facto platform for data driven machine learning applications.
However, these centralized models of computing are unqual-
ified for dispersed high-volume real-time edge data intensive
applications such as real time object detection, where video
streams may be captured at multiple geographical locations.
While many recent advancements in object detection have been
made using Convolutional Neural Networks, these performance
improvements only focus on a single, contiguous object detection
model. In this paper, we propose a distributed Edge-Cloud R-
CNN pipeline. By splitting the object detection pipeline into
components and dynamically distributing these components in
the cloud, we can achieve optimal performance to enable real
time object detection. As a proof of concept, we evaluate the
performance of the proposed system on a distributed computing
platform including cloud servers and edge-embedded devices for
real-time object detection on live video streams.

Index Terms—Machine learning, Object detection, CNN, R-
CNN, Region proposal, Edge Computing, Distributed computing.

I. INTRODUCTION & MOTIVATION

The current evolution of object detection using Convolu-
tional Neural Networks (CNN) has progressed down a path
of combination-of-operations. This is to say, current models
attempt to reduce the number of distinct operations by sharing
and utilizing computations across multiple stages of the object
detection pipeline.

However, without a dedicated Graphics Processing Unit
(GPU) or other hardware accelerator, the performance benefits
seen while deploying these models can not be realized. As a
solution to this issue, this paper proposes a distributed model,
where components from existing object detection pipelines
are containerized and deployed on various devices in the
cloud to leverage all available compute power. This distributed
computing approach to an object detection pipeline is the first
the authors are aware of in literature.

This distributed pipeline would allow for reasonable perfor-
mance from an object detection model without the need for
expensive, dedicated GPU servers. This is useful in scenarios
where bandwidth and/or power is limited, as less data needs to
be sent to the cloud, and computation can be distributed onto
devices as portable as a laptop CPU and a power-efficient
GPU-enabled edge device.

The distributed pipeline in this paper will be based on the
region-proposal algorithm (RPA) with CNN features model

(R-CNN). As a comparison to the contemporary R-CNN object
detection pipeline, a standard (undistributed) Faster R-CNN
model was trained to serve as a benchmark for future work.
Details of this model will be discussed in Section V.

The rest of the paper progresses as follows. First, section
IT provides a literature review of past and current R-CNN
pipelines. Section III uses the concepts discussed in section
II to define a new, distributed R-CNN pipeline. Section IV
discusses the progress made specifically with the RPA compo-
nent of the distributed R-CNN pipeline. Section V describes
the un-distributed model that is being used as a benchmark
for future work. Section VI lays out some future work for the
implementation and testing of the distributed R-CNN model,
and finally, section VII concludes this paper.

II. R-CNN BASED OBJECT DETECTION

Disjointed R-CNN. The first pipeline to successfully apply
region-proposal with CNN features was the R-CNN object
detection pipeline proposed by Girshik et al. in [1]. It is termed
disjointed in this paper because it takes distinct, previously
existing components and combines them into a unified object
detection pipeline. It’s architecture can be found in Fig. 1.

The first stage consists of a RPA that takes an image as
input and returns a number of bounding boxes predicted to
contain an object of interest. The original R-CNN model used
Selective Search [1] to generate approximately 2000 boxes per
image.

The second stage is a Convolutional Neural Network [12]
[15]. Bounding boxes from the RPA are used to crop the input
image. These crops are then warped to a fixed, square reso-
lution in order to accommodate the CNN. Feature maps are
computed for each warped region. Note that this is happening
up to 2000x per image.

Finally, an SVM (Support Vector Machine) is used to
classify each region based on the features extracted by the
CNN.

This method for object detection was shown to have sig-
nificant accuracy improvements on the canonical PASCAL
VOC [7] dataset compared to previous methods using SIFT
[8] and HOG [9] features. Additionally, when compared to the
OverFeat [10] model, a model which did utilize CNN features,
but implemented a sliding window detector [13] [14] instead

146

978-1-5323-7791-4/2018/ (©2018 TSI Press, Inc

Region Proposal Algorithm

NN

Bounding
e : Boxes
oo Warped
n :
Regions

CNN Feature Extractor

/R

n eee | 2 1

\V

\ SVM Classifier J

Feature Maps

Class Decisions/

Cat
a Bounding Boxes

Thing eee

Dog

Fig. 1: R-CNN - Girshik et al. [1]

of a RPA, R-CNN outperformed by a significant margin on
the ILSVCR [11] dataset.

Less Convolutions. The next evolution in R-CNNs were
models like Fast R-CNN [2] and SPPnet [4] which, instead of
operating on each region proposal box individually, compute a
single convolutional feature map for an entire image (Fig. 2).
This dramatically reduces the number of operations performed
by the CNN for a single image, allowing it room to grow
in depth (more layers) and, consequently, achieve higher
accuracy.

After predicting bounding boxes and computing the image’s
feature map, the second stage maps bounding boxes to the
image’s feature map. The nomenclature in [2] refers to these
as Regions of Interest (Rol). Each of these regions are pooled
to form 1D feature vectors.

Finally, these feature vectors are fed to an SVM and
bounding-box regressors [16] for classification and localization
refinement respectively.

Fast R-CNN showed a 213x improvement in performance
over the original R-CNN model at run-time, and a 9x improve-
ment in training speed.

A Moving/Sharing of Operations. Faster R-CNN [3],
replaces the arbitrary RPA present in R-CNN and Fast R-CNN
with a unified Region Proposal Network (RPN). This network
generates bounding boxes by performing convolution over the
feature maps produced by the CNN feature extractor of Fast
R-CNN. This is particularly impactful on performance because

CNN Feature
Extractor

Region Proposal
Algorithm

Bounding

Feature Boxes

Maps

Pooling Layer

Feature Vectors

| SVM Classifier/ |
Box Regressor

J

Class Decisions/

Bounding Boxes Thinge e e

Cat| |Dog

Fig. 2: Fast R-CNN - Girshik [2]

using convolutions for the Region Proposal Network allows it
to be moved from the CPU to the GPU.

Additional performance benefits are gained from sharing
convolution operations across the RPN and CNN stages of
the model.

Further developments in object detection have seen a de-
parture from the dedicated region proposal method. Models
such as SSD [6] and YOLO [5] forgo a dedicated region
proposal algorithm to improve computational performance, but
this often sacrifices accuracy for detection speed.

III. DISTRIBUTED R-CNN

This paper’s contribution to literature is the use of dis-
tributed computing to deploy a R-CNN object detection
pipeline as discussed above. As noted in literature [5] [6], the
need for a RPA in the R-CNN pipeline creates a bottleneck at
the CPU. Approaches to mitigating this bottleneck have aimed
to refine a single, contiguous model by reducing the total
number of operations across the pipeline, and by moving RPA
operations to the GPU. Other pipelines take unique approaches
such as a cascade of more efficient, lighter networks, or a color
based detection metric, to improve accuracy while maintaining
efficiency [36] [37] [38].

The approach in this paper splits the R-CNN pipeline into
discrete components. These components can be containerized
and deployed [33] [34] [35] in the cloud to take advantage of
the compute resources of multiple devices. Distributing the

147

Video Feed

Bounding Boxes

Region
Proposal
Algorithm

Case 1! we—
Case2; = == =

Raspberry Pi

Jetson TX2

Feature Vectors

Detected Objects

CPU Server

Fig. 3: Distributed R-CNN

computational requirements for the pipeline is expected to
improve performance, especially in cases where limited hard-
ware infrastructure prohibits the use of a dedicated, centralized
GPU infrastructure. This would serve to improve detection
speed and latency while maintaining the accuracy benefits of
R-CNN.

For the purposes of this distributed pipeline, 3 primary
components are considered; a region proposal algorithm, a
CNN feature extractor, and then any additional layers used
for final classification and bounding box regression. As a proof
of concept, the first implementation of the distributed pipeline
will be modeled after the simplest R-CNN model, the original
R-CNN.

Fig. 3 illustrates several possible distribution cases for the
R-CNN model. Each case has a set of potential advantages
and disadvantages. Case 1 takes advantage of the high CPU
compute power provided by a CPU bound cloud to accelerate
the region proposal algorithm, while simultaneously taking
advantage of the Nvidia Jetson TX2’s GPU for computing
CNN feature vectors. Case 2 is the most distributed case, but
the Raspberry Pi’s limited compute capabilities may pose a
bottleneck to the system.

A. Region Proposal Algorithm

Several region proposal algorithm were considered in the
development of this distributed R-CNN model. In particular,
selective search, objectness, and EdgeBoxes were evaluated
using Hosang et al’s paper on current detection proposal
methods [22].

Selective Search [17] [18], as used in the original R-CNN
[1] model, uses the concept of superpixels to segment an image
at different levels of granularity. Superpixels are regions of an
image where the original pixels have been merged to express
the presence of an object. No model is trained to achieve

this. Instead, specifically designed features and score functions
define which pixels get merged into superpixels.

Objectness [19] [20] refers to how likely it is that a
bounding box contains an object. The algorithm to predict
objectness uses a variety of indicators such as edge density,
saliency and color contrast to generate bounding boxes.

EdgeBoxes [21] is a relatively new RPA that makes bound-
ing box predictions based on an edge map generated by Struc-
tured Forests [23] [24]. Structured Forests uses a trained model
to generate edges from an input image, which is then fed
to EdgeBoxes for bounding box prediction. These predictions
are made based on how many contours are contained wholly
within a region of the edge map.

Comparison Hosang et al. judged region proposal algo-
rithms on three criteria: repeatability, recall, and detection. In
addition, execution time of the algorithm was recorded.

Repeatability is defined as a RPA’s propensity to re-localize
similar image content within a variety of different images.
That is, if an algorithm predicts the location of something
within an image, that same prediction will be repeatable if
fed a modified image. This was tested in [22] by adjusting
an image’s brightness, saturation, crop, etc. and checking for
re-detection of objects. The 3 algorithms under consideration
scored as follows, from best to worst; EdgeBoxes, selective
search, then objectness.

Recall refers to how many ground truth detection anno-
tations the RPA "hits” with its bounding boxes. The value
of recall was tested by Hosang et al. at several Intersec-
tion over Union (IoU) values and with differing numbers of
proposals. Objectness consistently scored the worst compared
to EdgeBoxes and selective search. When considering a low
IoU, EdgeBoxes consistently scores the best of all methods.
However, as IoU values increase to around 0.8, selective search
scores better.

148

Finally, the detection metric measures how well a region
proposal algorithm works in practice with a detection pipeline.
From best to worst, the 3 algorithms scored as follows;
EdgeBoxes, selective search, then objectness.

Conclusion. Edgeboxes and selective search are the most
attractive RPAs because of their high recall. However, Edge-
Boxes is up to two orders of magnitude faster than selective
search, so it was selected for this pipeline. Although its
predicted bounding boxes may have poor IoU with objects
in a scene, well designed final layers can refine the bounding
boxes to more accurately encompass objects.

B. CNN Feature Extractor

To provide a good basis for comparison, the CNN used for
the distributed pipeline will be the same as that used in the
original R-CNN model [12]. Further work for creating a faster
distributed pipeline will adapt the inception_v?2 architecture to
a Fast R-CNN architecture. The CNN’s layer architecture for
the current implementation can be found in Table 1.

type kernel shape/stride | input shape
conv 11x11/4 225x225x3
pool 3x3/2 54x54x96
conv 5x5/1 26x26x96
pool 3x3/2 22x22x256
conv 3x3/1 10x10x256
conv 3x3/1 8x8x384
conv 3x3/1 6x6x384
dense 2048 4x4x256
linear logits 1x2048
softmax classifier 1x80

TABLE I: CNN Layer Architecture

C. Additional Layers

The final dense, logits, and softmax layers will be separated
from the CNN classifier discussed above. They will receive
the feature vectors from the CNN and predict classes for each
bounding box.

IV. EDGEBOXES
A. Implementation

As a first step in implementing the distributed R-CNN
model, EdgeBoxes was used for region proposal on a video
of a parking lot.

The EdgeBoxes RPA consists of two steps. First, an edge
map and orientation map are generated for an input image
using Structured Forests. This can be seen in Fig. 4, where
the upper left image is the original video feed and the upper
right image is the edge map generated by Structured Forests.

The second stage feeds the edge map and orientation map
into the EdgeBoxes algorithm for bounding box proposal. This
can be seen in the bottom image of Fig. 4. It should be noted
that, for visualization purposes, only 100 boxes were proposed
in Fig. 4, whereas the actual number of boxes proposed will
be an order of magnitude greater.

Implementation details for hardware and software parame-
ters are as follows:

Fig. 4: Edge Map Generation and Bounding Box Proposals

6.086.11

4.784 654,64

Frames per Second (FPS)

@ Deskiop

@ Jetson
/0:270.250.250.300.300.30
013 3
®Fr
——————
1]
P S TR T . I B LN K \%\\1\;\

Predictor : Generator

Fig. 5: EdgeBoxes Performance on Different Platforms

o Desktop: workstation, quad-core Intel i7-4770 CPU

o RPi: Raspberry Pi 3 Model B, quad-core ARM CPU

e Jetson: NVIDIA Jetson TX2, dual-core Denver CPU +
quad-core ARM

o Structured Forests: OpenCV [31] implementation and
model from [32].

o EdgeBoxes: OpenCV implementation. Parameters: alpha
0.65, beta 0.75, minscore 0.03, + OpenCV defaults.

The primary efforts for this implementation were focused
on improving the computational performance of the region
proposal algorithm.

B. Results

Initially, a consecutive execution approach was taken, where
Structured Forests would first generate an edge map and
orientation map, then EdgeBoxes would process these maps

149

for bounding box proposal. However, this method was un-
acceptably slow. It was observed that EdgeBoxes consistently
“waited” on Structured Forests to generate the necessary maps;
so, a method using multi-threaded computation was imple-
mented. While EdgeBoxes predicts bounding boxes for the
current frame, Structured Forests generates the next frame’s
maps, serving as a frame buffer.

Performance was tested by spawning different ratios of
Structured Forest threads to EdgeBoxes threads. Since Struc-
tured Forest threads serve to buffer for EdgeBoxes threads, a
number of EdgeBoxes threads were spawned, and then either
1, 2, or 3 Structured Forests threads were spawned for each
EdgeBoxes thread. ie. 1 Edgeboxes : 2 Structured Forests
threads.

Performance increases are shown in Fig. 5, measured in
frames per second (FPS). The horizontal axis is the number of
EdgeBoxes threads and Structured Forests threads spawned (ie
2:6 - 2 EdgeBoxes:6 Structured Forests), where 0:0 represents
consecutive execution. A steady increase in FPS can be seen
from consecutive execution to multiple threads on the Desktop
and Jetson TX2 platforms. With an execution FPS of 0.78 at 1
thread (0:0), a value of 6.08 FPS at 9 threads (3:6) represents
a 85% increase in performance per thread on the desktop. The
Jetson TX2 performance gains, while notable, provide a poor
analogy to a CPU cloud due to the Jetson’s mix of faster and
slower cores.

The Raspberry Pi sees an improvement in performance
from consecutive execution to multi-threading, but these im-
provements taper off quite quickly due to the Pi’s insufficient
CPU overhead. A slight disparity can be seen between the
bare-metal performance of the desktop vs a containerized
deployment, but this disparity is reduced as more threads
are spawned. Further investigation is required to explain this
performance difference.

Regardless, results from the desktop implementation suggest
that region proposal using a multi-threaded EdgeBoxes would
scale well with the high core count of a CPU-bound cloud.
Since the efforts described here are primarily to improve
computational performance, further testing with the completed
distributed pipeline is needed to evaluate accuracy.

V. CNN FEATURE EXTRACTOR

In a manner similar to that used by Google’s pre-trained
feature extractors (Section VI), the CNN will first be trained
broadly on a publicly available dataset, Microsoft’s COCO
[26]. Then, the model’s weights will be saved and re-trained
to identify cars in a parking lot using a fine-tuning dataset.
This is to ensure that the model is proficient at recognizing
cars from an elevated perspective, such as that of a drone
above a parking lot, for the use case described in Section VI.

Because COCO is a dataset designed to test object de-
tection algorithms, training the CNN as a classifier requires
preprocessing of each image into separate objects. This is
accomplished by cropping and warping each object in an
image and feeding them individually to the CNN. This is

identical to how the completed pipeline will utilize a RPA’s
predicted bounding boxes.

A. Results

The CNN was implemented using Google’s Tensorflow
library [30]. Initial training of the CNN has achieved 67%
accuracy across all 80 classes of the COCO dataset. This level
of accuracy was achieved after 60 hours of training on a GTX
1080.

Considering recall values at different IoUs for EdgeBoxes
from [22], we expect accuracy results on the COCO dataset
for the distributed pipeline to approach those in Table II.
Candidates refers to the number of boxes proposed by
EdgeBoxes at run time.

Execution time on a GTX 1080 for 1000 candidate bounding
boxes was 1.12 seconds and 29.2 seconds on the Jetson TX2.
Further improvements to this execution time will be made with
the adoption of a Fast-CNN architecture.

Candidates | mAP@0.5 IoU | mAP@(.7 IoU
1000 51.0 43.2
10000 57.0 51.0

TABLE II: Expected Accuracy Results

VI. FASTER R-CNN

As a comparison to the standard R-CNN object detection
pipeline, a Faster R-CNN model using the inception_v2 [29]
CNN architecture will be deployed on a CPU bound server.
This model will not be split into components, and so will run
its RPA, CNN, and other operations on a single device. This
will allow for quantitative benchmark metrics to be compared
to the novel, distributed pipeline’s performance.

A. Training

Due to the fairly high cost of training, with regards to both
hardware and time requirements, a method using Google’s pre-
trained feature extractors is explored [25]. The model used as a
benchmark in this paper is the faster rcnn inception_v2 model
pre-trained on the coco dataset [26].

To ensure the model would be proficient at recognizing cars
from an elevated perspective (such as that of a camera over a
parking lot) for the test case (section VI), the model was fine-
tuned with a small set of images pulled from two datasets.

The first dataset was provided by [27] and was used in
the testing of their system. It consists of images from several
different parking areas and from multiple perspectives. The
second dataset was provided by [28] and consists of several
thousand images from three different cameras perspectives at
three different parking lots during various times throughout the
day. After cleaning up annotation values, the final dataset used
for fine-tune training and evaluation consists of 155 images,
containing 5837 cars.

The faster r-cnn inception_v2 model was fine-tune trained
for 6.5 hours on the dataset described above, where the dataset
was split 4:1, training:evaluation (124 training. 31 evaluation).
Accuracy plateaued at around 80% on the evaluation dataset.

150

VII. FURTHER WORK

While progress has been made in implementing individual
components of the distributed pipeline, more work is needed
to further improve and evaluate the accuracy of the combined
pipeline. In particular, the IoU of Edgeboxes on the COCO
dataset needs to be improved with tweaks to its detection
parameters. The Accuracy of the CNN feature extractor on
the COCO dataset in deployment also needs to be improved.
Additionally, further performance optimizations by adopting a
Fast-CNN architecture will be made for the CNN.

As an ”in the wild” test case, a camera based infrastructure
using R-CNN models proposed in this paper will be used
to track cars in a parking lot. This data will be used to
monitor parking lot occupancy conditions in real-time. Both
the distributed and undistributed R-CNN models will be de-
ployed and tested on a series of metrics including latency and
accuracy.

VIII. CONCLUSION

This paper presents the components for a distributed R-
CNN pipeline. This pipeline is based on the original R-CNN
architecture [1], with future work to adopt a Fast R-CNN
architecture [2]. EdgeBoxes [21] was chosen for the Region
Proposal Algorithm component of the pipeline. Performance
increases were achieved through multithreading the different
stages [23] [24] of EdgeBoxes. A CNN based on the original
R-CNN’s model was designed and trained as the feature
extractor and classifier of the model. Finally, as a benchmark
for future work, an undistributed Faster R-CNN model was
trained on the parking lot test discussed in section VI.

REFERENCES

[1] Girshick Ross, et al. "Rich feature hierarchies for accurate object detec-
tion and semantic segmentation.” Proceedings of the IEEE conference
on computer vision and pattern recognition. 2014.

[2] Girshick Ross. "Fast r-cnn.” arXiv preprint arXiv:1504.08083 (2015).

[3] Ren Shaoqing, et al. “Faster r-cnn: Towards real-time object detection
with region proposal networks.” Advances in neural information pro-
cessing systems. 2015.

[4] He Kaiming, et al. ”Spatial pyramid pooling in deep convolutional
networks for visual recognition.” european conference on computer
vision. Springer, Cham, 2014.

[5] Redmon, Joseph, et al. ”You only look once: Unified, real-time object
detection.” Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016.

[6] Liu Wei, et al. ”Ssd: Single shot multibox detector.” European confer-
ence on computer vision. Springer, Cham, 2016.

[7]1 Everingham, Mark, et al. ”The pascal visual object classes (voc) chal-
lenge.” International journal of computer vision 88.2 (2010): 303-338.

[8] Lowe, David G. "Distinctive image features from scale-invariant key-
points.” International journal of computer vision 60.2 (2004): 91-110.

[9] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for

human detection.” Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE,

2005.

Sermanet, Pierre, et al. “Overfeat: Integrated recognition, localiza-

tion and detection using convolutional networks.” arXiv preprint

arXiv:1312.6229 (2013).

Deng, J., et al. “Imagenet large scale visual recognition competition.”

(ILSVRC2012) (2012).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet

classification with deep convolutional neural networks.” Advances in

neural information processing systems. 2012.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

(30]

(31]

[32]

(33]

(34]

(35]

(36]

[37]

(38]

151

Rowley, Henry A., Shumeet Baluja, and Takeo Kanade. “Neural
network-based face detection.” IEEE Transactions on pattern analysis
and machine intelligence 20.1 (1998): 23-38.

Sermanet, Pierre, et al. “Pedestrian detection with unsupervised multi-
stage feature learning.” Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on. IEEE, 2013.

LeCun, Yann, et al. "Backpropagation applied to handwritten zip code
recognition.” Neural computation 1.4 (1989): 541-551.

Felzenszwalb, Pedro F., et al. ”Object detection with discriminatively
trained part-based models.” IEEE transactions on pattern analysis and
machine intelligence 32.9 (2010): 1627-1645.

Uijlings, Jasper RR, et al. ”Selective search for object recognition.”
International journal of computer vision 104.2 (2013): 154-171.

Van de Sande, Koen EA, et al. "Segmentation as selective search for
object recognition.” Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, 2011.

Alexe, Bogdan, Thomas Deselaers, and Vittorio Ferrari. "What is an
object?.” Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on. IEEE, 2010.

Alexe, Bogdan, Thomas Deselaers, and Vittorio Ferrari. "Measuring the
objectness of image windows.” IEEE transactions on pattern analysis
and machine intelligence 34.11 (2012): 2189-2202.

Zitnick, C. Lawrence, and Piotr Dollr. ”Edge boxes: Locating object
proposals from edges.” European Conference on Computer Vision.
Springer, Cham, 2014.

Hosang, Jan, Rodrigo Benenson, and Bernt Schiele. "How good are
detection proposals, really?.” arXiv preprint arXiv:1406.6962 (2014).
Dollr, Piotr, and C. Lawrence Zitnick. ”Structured forests for fast
edge detection.” Computer Vision (ICCV), 2013 IEEE International
Conference on. IEEE, 2013.

Dollr, Piotr, and C. Lawrence Zitnick. “Fast edge detection using
structured forests.” IEEE transactions on pattern analysis and machine
intelligence 37.8 (2015): 1558-1570.

Huang, Jonathan, et al. ”’Speed/accuracy trade-offs for modern convolu-
tional object detectors.” IEEE CVPR. 2017.

Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context.”
European conference on computer vision. Springer, Cham, 2014.

X. Ling, J. Sheng, O. Baiocchi, X. Liu and M. E. Tolentino, Identifying
parking spaces & detecting occupancy using vision-based IoT devices,”
2017 Global Internet of Things Summit (GIoTS), Geneva, 2017, pp. 1-6.
Almeida, P., Oliveira, L. S., Silva Jr, E., Britto Jr, A., Koerich, A.,
PKLot A robust dataset for parking lot classification, Expert Systems
with Applications, 42(11):4937-4949, 2015.

Szegedy, Christian, et al. “Rethinking the inception architecture for
computer vision.” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016.

Dean, J., and R. Monga. “TensorFlow: Large-scale machine learning on
heterogeneous systems.” TensorFlow. org. Google Research. Retrieved
10 (2015).

Bradski, Gary. "The opencv library (2000).” Dr. Dobbs Journal of
Software Tools (2000).

OpenCV, ximgproc: module for extended image processing,
github.com/opencv/opencv_extra/blob/master/testdata/cv/ximgproc/
model.yml.gz

Benson, James O., John J. Prevost, and Paul Rad. ”Survey of automated
software deployment for computational and engineering research.” Sys-
tems Conference (SysCon), 2016 Annual IEEE. IEEE, 2016.

Rad, P, Lindberg, V., Prevost, J., Zhang, W., & Jamshidi, M. (2014,
August). ZeroVM: secure distributed processing for big data analytics.
In World Automation Congress (WAC), 2014 (pp. 1-6). IEEE.

Karim, S., John Prevost, and Paul Rad. “Efficient real-time mobile
computation in the cloud using containers.” (2016): 21-30.

Lwowski, J., Kolar, P., Benavidez, P., Rad, P., Prevost, J. J., & Jamshidi,
M. (2017, June). Pedestrian detection system for smart communities
using deep Convolutional Neural Networks. In System of Systems
Engineering Conference (SoSE), 2017 12th (pp. 1-6). IEEE.

M. Bagheri, M. Madani, R. Sahba, and A. Sahba, "Real time object de-
tection using a novel adaptive color thresholding method”, International
ACM workshop on Ubiquitous meta user interfaces (Ubi-MUI'11),
Scottsdale, AZ, November 2011.

A. Sahba, R. Sahba and W. M. Lin, "Improving IPC in simultaneous
multi-threading (SMT) processors by capping 1Q utilization according
to dispatched memory instructions,” 2014 World Automation Congress
(WAC), Waikoloa, HI, 2014, pp. 893-899.

